Bias in randomised factorial trials.

نویسنده

  • Brennan C Kahan
چکیده

Factorial trials are an efficient method of assessing multiple treatments in a single trial, saving both time and resources. However, they rely on the assumption of no interaction between treatment arms. Ignoring the possibility of an interaction in the analysis can lead to bias and potentially misleading conclusions. Therefore, it is often recommended that the size of the interaction be assessed during analysis. This approach can be formalised as a two-stage analysis; if the interaction test is not significant, a factorial analysis (where all patients receiving treatment A are compared with all not receiving A, and similarly for treatment B) is performed. If the interaction is significant, the analysis reverts to that of a four-arm trial (where each treatment combination is regarded as a separate treatment arm). We show that estimated treatment effects from the two-stage analysis can be biased, even in the absence of a true interaction. This occurs because the interaction estimate is highly correlated with treatment effect estimates from a four-arm analysis. Simulations show that bias can be severe (over 100% in some cases), leading to inflated type I error rates. Therefore, the two-stage analysis should not be used in factorial trials. A preferable approach may be to design multi-arm trials (i.e. four separate treatment groups) instead. This approach leads to straightforward interpretation of results, is unbiased regardless of the presence of an interaction, and allows investigators to ensure adequate power by basing sample size requirements on a four-arm analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Economic evaluation of factorial randomised controlled trials: challenges, methods and recommendations

Increasing numbers of economic evaluations are conducted alongside randomised controlled trials. Such studies include factorial trials, which randomise patients to different levels of two or more factors and can therefore evaluate the effect of multiple treatments alone and in combination. Factorial trials can provide increased statistical power or assess interactions between treatments, but ra...

متن کامل

Reporting of factorial trials of complex interventions in community settings: a systematic review

BACKGROUND Standards for the reporting of factorial randomised trials remain to be established. We aimed to review the quality of reporting of methodological aspects of published factorial trials of complex interventions in community settings. METHODS We searched MEDLINE, EMBASE, PsychInfo and the Cochrane Controlled Trials Register to identify factorial randomised trials of complex intervent...

متن کامل

Design, analysis and presentation of factorial randomised controlled trials

BACKGROUND The evaluation of more than one intervention in the same randomised controlled trial can be achieved using a parallel group design. However this requires increased sample size and can be inefficient, especially if there is also interest in considering combinations of the interventions. An alternative may be a factorial trial, where for two interventions participants are allocated to ...

متن کامل

Multiple imputation methods for bivariate outcomes in cluster randomised trials

Missing observations are common in cluster randomised trials. The problem is exacerbated when modelling bivariate outcomes jointly, as the proportion of complete cases is often considerably smaller than the proportion having either of the outcomes fully observed. Approaches taken to handling such missing data include the following: complete case analysis, single-level multiple imputation that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 32 26  شماره 

صفحات  -

تاریخ انتشار 2013